Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(15)2023 Aug 07.
Article in English | MEDLINE | ID: mdl-37569892

ABSTRACT

Chromosome segregation in Pseudomonas aeruginosa is assisted by the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB) and its target parS sequence(s). ParB forms a nucleoprotein complex around four parSs (parS1-parS4) that overlaps oriC and facilitates relocation of newly synthesized ori domains inside the cells by ParA. Remarkably, ParB of P. aeruginosa also binds to numerous heptanucleotides (half-parSs) scattered in the genome. Here, using chromatin immunoprecipitation-sequencing (ChIP-seq), we analyzed patterns of ParB genome occupancy in cells growing under conditions of coupling or uncoupling between replication and cell division processes. Interestingly, a dissipation of ParB-parS complexes and a shift of ParB to half-parSs were observed during the transition from the exponential to stationary phase of growth on rich medium, suggesting the role of half-parSs in retaining ParB on the nucleoid within non-dividing P. aeruginosa cells. The ChIP-seq analysis of strains expressing ParB variants unable to dislocate from parSs showed that the ParB spreading ability is not required for ParB binding to half-parSs. Finally, a P. aeruginosa strain with mutated 25 half-parSs of the highest affinity towards ParB was constructed and analyzed. It showed altered ParB coverage of the oriC region and moderate changes in gene expression. Overall, this study characterizes a novel aspect of conserved bacterial chromosome segregation machinery.


Subject(s)
Chromosome Segregation , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Cell Division , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Nucleoproteins/genetics , Bacterial Proteins/metabolism , Binding Sites , DNA, Bacterial/metabolism , Chromosomes, Bacterial/genetics
2.
Microbiol Spectr ; 11(1): e0428922, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36622167

ABSTRACT

In the majority of bacterial species, the tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target parS sequence(s), assists in the chromosome partitioning. ParB forms large nucleoprotein complexes at parS(s), located in the vicinity of origin of chromosomal replication (oriC), which after replication are subsequently positioned by ParA in cell poles. Remarkably, ParA and ParB participate not only in the chromosome segregation but through interactions with various cellular partners they are also involved in other cell cycle-related processes, in a species-specific manner. In this work, we characterized Pseudomonas aeruginosa ParB interactions with the cognate ParA, showing that the N-terminal motif of ParB is required for these interactions, and demonstrated that ParAB-parS-mediated rapid segregation of newly replicated ori domains prevented structural maintenance of chromosome (SMC)-mediated cohesion of sister chromosomes. Furthermore, using proteome-wide techniques, we have identified other ParB partners in P. aeruginosa, which encompass a number of proteins, including the nucleoid-associated proteins NdpA(PA3849) and NdpA2, MinE (PA3245) of Min system, and transcriptional regulators and various enzymes, e.g., CTP synthetase (PA3637). Among them are also NTPases PA4465, PA5028, PA3481, and FleN (PA1454), three of them displaying polar localization in bacterial cells. Overall, this work presents the spectrum of P. aeruginosa ParB partners and implicates the role of this protein in the cross-talk between chromosome segregation and other cellular processes. IMPORTANCE In Pseudomonas aeruginosa, a Gram-negative pathogen causing life-threatening infections in immunocompromised patients, the ParAB-parS system is involved in the precise separation of newly replicated bacterial chromosomes. In this work, we identified and characterized proteins interacting with partitioning protein ParB. We mapped the domain of interactions with its cognate ParA partner and showed that ParB-ParA interactions are crucial for the chromosome segregation and for proper SMC action on DNA. We also demonstrated ParB interactions with other DNA binding proteins, metabolic enzymes, and NTPases displaying polar localization in the cells. Overall, this study uncovers novel players cooperating with the chromosome partition system in P. aeruginosa, supporting its important regulatory role in the bacterial cell cycle.


Subject(s)
Bacterial Proteins , Pseudomonas aeruginosa , Humans , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Chromosome Segregation , Cell Division , Nucleoproteins/genetics , Nucleoproteins/metabolism , Chromosomes, Bacterial/genetics , DNA, Bacterial/genetics , DNA, Bacterial/metabolism
3.
Int J Mol Sci ; 23(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36077372

ABSTRACT

The RA3 plasmid, the archetype of IncU incompatibility group, represents a mosaic-modular genome of 45.9 kb. The replication module encompasses repA and repB (initiator) surrounded by two long repetitive sequences DR1 and DR2 of unknown function. Here, we mapped the origin of replication oriV to the 3' end of repB and showed that oriV was activated by the transcription coming from orf02revp in the adjacent stability module. Using various in vivo and in vitro methods we demonstrated that the repB expression proceeded either from repBp located in the intergenic repA-repB region or from the upstream strong repAp that was autoregulated by RepA. Additionally, the repBp activity was modulated by the transcription from the overlapping, divergently oriented repXp. Both repXmRNA (antisense for repAmRNA) and its small polypeptide product, RepX, were strong incompatibility determinants. Hence, we showed that the sophisticated RA3 copy number control combined the multivalent regulation of repB expression, RepB titration by DR1, and transcriptional activation of oriV, dependent on the RA3 global regulatory network. Similarly organized replicons have been found in diverse bacterial species confirming the significance of these mechanisms in establishing the IncU plasmids in a broad spectrum of hosts.


Subject(s)
Bacterial Proteins , Gene Expression Regulation, Bacterial , Bacterial Proteins/metabolism , DNA Copy Number Variations , DNA Replication/genetics , Plasmids/genetics , Replicon
4.
Int J Mol Sci ; 22(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063039

ABSTRACT

KfrC proteins are encoded by the conjugative broad-host-range plasmids that also encode alpha-helical filament-forming KfrA proteins as exemplified by the RA3 plasmid from the IncU incompatibility group. The RA3 variants impaired in kfrA, kfrC, or both affected the host's growth and demonstrated the altered stability in a species-specific manner. In a search for partners of the alpha-helical KfrC protein, the host's membrane proteins and four RA3-encoded proteins were found, including the filamentous KfrA protein, segrosome protein KorB, and the T4SS proteins, the coupling protein VirD4 and ATPase VirB4. The C-terminal, 112-residue dimerization domain of KfrC was involved in the interactions with KorB, the master player of the active partition, and VirD4, a key component of the conjugative transfer process. In Pseudomonas putida, but not in Escherichia coli, the lack of KfrC decreased the stability but improved the transfer ability. We showed that KfrC and KfrA were involved in the plasmid maintenance and conjugative transfer and that KfrC may play a species-dependent role of a switch between vertical and horizontal modes of RA3 spreading.


Subject(s)
Bacterial Proteins/chemistry , Host Specificity , Plasmids/genetics , Amino Acid Sequence , Bacterial Proteins/metabolism , Base Sequence , Conjugation, Genetic , Escherichia coli/genetics , Models, Biological , Protein Binding , Protein Conformation, alpha-Helical , Protein Domains , Sequence Deletion
5.
Appl Environ Microbiol ; 87(2)2021 01 04.
Article in English | MEDLINE | ID: mdl-33097508

ABSTRACT

KfrA, encoded on the broad-host-range RA3 plasmid, is an alpha-helical DNA-binding protein that acts as a transcriptional autoregulator. The KfrARA3 operator site overlaps the kfrA promoter and is composed of five 9-bp direct repeats (DRs). Here, the biological properties of KfrA were studied using both in vivo and in vitro approaches. Localization of the DNA-binding helix-turn-helix motif (HTH) was mapped to the N29-R52 region by protein structure modeling and confirmed by alanine scanning. KfrA repressor ability depended on the number and orientation of DRs in the operator, as well as the ability of the protein to oligomerize. The long alpha-helical tail from residues 54 to 355 was shown to be involved in self-interactions, whereas the region from residue 54 to 177 was involved in heterodimerization with KfrC, another RA3-encoded alpha-helical protein. KfrA also interacted with the segrosome proteins IncC (ParA) and KorB (ParB), representatives of the class Ia active partition systems. Deletion of the kfr genes from the RA3 stability module decreased the plasmid retention in diverse hosts in a species-dependent manner. The specific interactions of KfrA with DNA are essential not only for the transcriptional regulatory function but also for the accessory role of KfrA in stable plasmid maintenance.IMPORTANCE Alpha-helical coiled-coil KfrA-type proteins are encoded by various broad-host-range low-copy-number conjugative plasmids. The DNA-binding protein KfrA encoded on the RA3 plasmid, a member of the IncU incompatibility group, oligomerizes, forms a complex with another plasmid-encoded, alpha-helical protein, KfrC, and interacts with the segrosome proteins IncC and KorB. The unique mode of KfrA dimer binding to the repetitive operator is required for a KfrA role in the stable maintenance of RA3 plasmid in distinct hosts.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Plasmids , Bacteria/genetics
6.
Appl Environ Microbiol ; 86(16)2020 08 03.
Article in English | MEDLINE | ID: mdl-32532870

ABSTRACT

The broad-host-range (BHR) conjugative plasmids have developed diverse adaptive mechanisms defining the range of their promiscuity. The BHR conjugative RA3 plasmid, the archetype of the IncU group, can transfer between, replicate in, and be maintained in representatives of Alpha-, Beta-, and Gammaproteobacteria Its stability module encompasses ten open reading frames (ORFs) apparently organized into five operons, all transcribed in the same direction from several strong promoters that are tightly regulated either by autorepressors or by global plasmid-encoded regulators. In this paper, we demonstrate that owing to an efficient RNA polymerase (RNAP) read-through, the transcription from the first promoter, orf02p, may continue through the whole module. Moreover, an analysis of mRNA produced from the wild-type (WT) stability module and its deletion variants deprived of particular internal transcription initiation sites reveals that in fact each operon may be transcribed from any upstream promoter, giving rise to multicistronic transcripts of variable length and creating an additional level of gene expression control by transcript dosage adjustment. The gene expression patterns differ among various hosts, indicating that promoter recognition, regulation, and the RNAP read-through mechanisms are modulated in a species-specific manner.IMPORTANCE The efficiently disseminating conjugative or mobilizable BHR plasmids play key roles in the horizontal spread of genetic information between closely related and phylogenetically distant species, which can be harmful from the medical, veterinary, or industrial point of view. Understanding the mechanisms determining the plasmid's ability to function in diverse hosts is essential to help limit the spread of undesirable plasmid-encoded traits, e.g., antibiotic resistance. The range of a plasmid's promiscuity depends on the adaptations of its transfer, replication, and stability functions to the various hosts. IncU plasmids, with the archetype plasmid RA3, are considered to constitute a reservoir of antibiotic resistance genes in aquatic environments; however, the molecular mechanisms determining their adaptability to a broad range of hosts are rather poorly characterized. Here, we present the transcriptional organization of the stability module and show that the gene transcript dosage effect is an important determinant of the stable maintenance of RA3 in different hosts.


Subject(s)
DNA-Directed RNA Polymerases/genetics , Escherichia coli/genetics , Plasmids/genetics , Transcription, Genetic , DNA-Directed RNA Polymerases/metabolism , Escherichia coli/enzymology , Plasmids/metabolism
7.
Microbiologyopen ; 9(8): e1052, 2020 08.
Article in English | MEDLINE | ID: mdl-32419387

ABSTRACT

Nudix proteins catalyze the hydrolysis of pyrophosphate bonds in a variety of substrates and are ubiquitous in all domains of life. The genome of an important opportunistic human pathogen, Pseudomonas aeruginosa, encodes multiple Nudix proteins. To determine the role of nine Nudix hydrolases of the P. aeruginosa PAO1161 strain in its fitness, virulence or antibiotic resistance mutants devoid of individual enzymes were constructed and analyzed for growth rate, motility, biofilm formation, pyocyanin production, and susceptibility to oxidative stress and different antibiotics. The potential effect on bacterial virulence was studied using the Caenorhabditis elegans-P. aeruginosa infection model. Of the nine mutants tested, five had an altered phenotype in comparison with the wild-type strain. The ΔPA3470, ΔPA3754, and ΔPA4400 mutants showed increased pyocyanin production, were more resistant to the ß-lactam antibiotic piperacillin, and were more sensitive to killing by H2 O2 . In addition, ΔPA4400 and ΔPA5176 had impaired swarming motility and were less virulent for C. elegans. The ΔPA4841 had an increased sensitivity to oxidative stress. These changes were reversed by providing the respective nudix gene in trans indicating that the observed phenotype alterations were indeed due to the lack of the particular Nudix protein.


Subject(s)
Drug Resistance, Bacterial/genetics , Locomotion/genetics , Pseudomonas aeruginosa/genetics , Pyrophosphatases/genetics , Virulence/genetics , Animals , Anti-Bacterial Agents/pharmacology , Antibiosis/genetics , Biofilms/growth & development , Caenorhabditis elegans/physiology , Escherichia coli/genetics , Genome, Bacterial/genetics , Hydrogen Peroxide/pharmacology , Microbial Sensitivity Tests , Oxidative Stress/genetics , Oxidative Stress/physiology , Plasmids/genetics , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/pathogenicity , Pyocyanine/biosynthesis , Pyrophosphatases/metabolism , Nudix Hydrolases
8.
Microorganisms ; 8(1)2020 Jan 11.
Article in English | MEDLINE | ID: mdl-31940850

ABSTRACT

The segregation of newly replicated chromosomes in bacterial cells is a highly coordinated spatiotemporal process. In the majority of bacterial species, a tripartite ParAB-parS system, composed of an ATPase (ParA), a DNA-binding protein (ParB), and its target(s) parS sequence(s), facilitates the initial steps of chromosome partitioning. ParB nucleates around parS(s) located in the vicinity of newly replicated oriCs to form large nucleoprotein complexes, which are subsequently relocated by ParA to distal cellular compartments. In this review, we describe the role of ParB in various processes within bacterial cells, pointing out interspecies differences. We outline recent progress in understanding the ParB nucleoprotein complex formation and its role in DNA segregation, including ori positioning and anchoring, DNA condensation, and loading of the structural maintenance of chromosome (SMC) proteins. The auxiliary roles of ParBs in the control of chromosome replication initiation and cell division, as well as the regulation of gene expression, are discussed. Moreover, we catalog ParB interacting proteins. Overall, this work highlights how different bacterial species adapt the DNA partitioning ParAB-parS system to meet their specific requirements.

9.
BMC Genomics ; 21(1): 14, 2020 Jan 06.
Article in English | MEDLINE | ID: mdl-31906858

ABSTRACT

BACKGROUND: Pseudomonas aeruginosa is a cause of nosocomial infections, especially in patients with cystic fibrosis and burn wounds. PAO1 strain and its derivatives are widely used to study the biology of this bacterium, however recent studies demonstrated differences in the genomes and phenotypes of derivatives from different laboratories. RESULTS: Here we report the genome sequence of P. aeruginosa PAO1161 laboratory strain, a leu-, RifR, restriction-modification defective PAO1 derivative, described as the host of IncP-8 plasmid FP2, conferring the resistance to mercury. Comparison of PAO1161 genome with PAO1-UW sequence revealed lack of an inversion of a large genome segment between rRNA operons and 100 nucleotide polymorphisms, short insertions and deletions. These included a change in leuA, resulting in E108K substitution, which caused leucine auxotrophy and a mutation in rpoB, likely responsible for the rifampicin resistance. Nonsense mutations were detected in PA2735 and PA1939 encoding a DNA methyltransferase and a putative OLD family endonuclease, respectively. Analysis of revertants in these two genes showed that PA2735 is a component of a restriction-modification system, independent of PA1939. Moreover, a 12 kb RPG42 prophage and a novel 108 kb PAPI-1 like integrative conjugative element (ICE) encompassing a mercury resistance operon were identified. The ICEPae1161 was transferred to Pseudomonas putida cells, where it integrated in the genome and conferred the mercury resistance. CONCLUSIONS: The high-quality P. aeruginosa PAO1161 genome sequence provides a reference for further research including e.g. investigation of horizontal gene transfer or comparative genomics. The strain was found to carry ICEPae1161, a functional PAPI-1 family integrative conjugative element, containing loci conferring mercury resistance, in the past attributed to the FP2 plasmid of IncP-8 incompatibility group. This indicates that the only known member of IncP-8 is in fact an ICE.


Subject(s)
Conjugation, Genetic/genetics , Genome, Bacterial/genetics , Plasmids/genetics , Pseudomonas aeruginosa/genetics , Drug Resistance, Microbial/drug effects , Drug Resistance, Microbial/genetics , Gene Transfer, Horizontal/genetics , Humans , Mercury/pharmacology , Mutation , Operon , Phenotype , Polymorphism, Single Nucleotide , Pseudomonas aeruginosa/classification , Pseudomonas putida/genetics , Sequence Analysis, DNA , Species Specificity
10.
Antimicrob Agents Chemother ; 63(12)2019 09 09.
Article in English | MEDLINE | ID: mdl-31527038

ABSTRACT

Multidrug efflux pumps play an important role in antibiotic resistance in bacteria. In Pseudomonas aeruginosa, MexXY pump provides intrinsic resistance to many antimicrobials, including aminoglycosides. The expression of mexXY operon is negatively regulated by MexZ repressor. The repression is alleviated in response to the antibiotic-induced ribosome stress, which results in increased synthesis of anti-repressor ArmZ, interacting with MexZ. The molecular mechanism of MexZ inactivation by ArmZ is not known. Here, we showed that the N-terminal part of MexZ, encompassing the DNA-binding domain, is required for interaction with ArmZ. Using the bacterial two hybrid system based mutant screening and pull-down analyses we identified substitutions in MexZ that diminished (R3S, K6E, R13H) or completely impaired (K53E) the interaction with ArmZ without blocking MexZ activity as a transcriptional repressor. Introduction of corresponding mexZ missense mutations into P aeruginosa PAO1161 chromosome impaired (mexZ K6E, mexZ R13H) or blocked (mexZ K53E) tetracycline mediated induction of mexY expression. Concomitantly, PAO1161 mexZ K53E strain was more susceptible to aminoglycosides. The identified residues are highly conserved in MexZ-like transcriptional regulators found in bacterial genomes encoding both MexX/MexY/MexZ and ArmZ/PA5470 orthologs, suggesting that a similar mechanism may contribute to induction of efflux mediated resistance in other bacterial species. Overall, our data shed light on the molecular mechanism of ArmZ mediated induction of intrinsic antimicrobial resistance in P. aeruginosa.

11.
Nucleic Acids Res ; 46(9): 4592-4606, 2018 05 18.
Article in English | MEDLINE | ID: mdl-29648658

ABSTRACT

ParA and ParB homologs are involved in accurate chromosome segregation in bacteria. ParBs participate in the separation of ori domains by binding to parS palindromes, mainly localized close to oriC. In Pseudomonas aeruginosa neither ParB deficiency nor modification of all 10 parSs is lethal. However, such mutants show not only defects in chromosome segregation but also growth retardation and motility dysfunctions. Moreover, a lack of parB alters expression of over 1000 genes, suggesting that ParB could interact with the chromosome outside its canonical parS targets. Here, we show that indeed ParB binds specifically to hundreds of sites in the genome. ChIP-seq analysis revealed 420 ParB-associated regions in wild-type strain and around 1000 in a ParB-overproducing strain and in various parS mutants. The vast majority of the ParB-enriched loci contained a heptanucleotide motif corresponding to one arm of the parS palindrome. All previously postulated parSs, except parS5, interacted with ParB in vivo. Whereas the ParB binding to the four parS sites closest to oriC, parS1-4, is involved in chromosome segregation, its genome-wide interactions with hundreds of parS half-sites could affect chromosome topology, compaction and gene expression, thus allowing P. aeruginosa ParB to be classified as a nucleoid-associated protein.


Subject(s)
Bacterial Proteins/metabolism , DNA, Bacterial/metabolism , DNA-Binding Proteins/metabolism , Pseudomonas aeruginosa/genetics , DNA, Bacterial/chemistry , Genome, Bacterial , Nucleotide Motifs , Pseudomonas aeruginosa/metabolism
12.
PLoS One ; 12(7): e0181726, 2017.
Article in English | MEDLINE | ID: mdl-28732084

ABSTRACT

Similarly to its homologs in other bacteria, Pseudomonas aeruginosa partitioning protein ParB facilitates segregation of newly replicated chromosomes. Lack of ParB is not lethal but results in increased frequency of anucleate cells production, longer division time, cell elongation, altered colony morphology and defective swarming and swimming motility. Unlike in other bacteria, inactivation of parB leads to major changes of the transcriptome, suggesting that, directly or indirectly, ParB plays a role in regulation of gene expression in this organism. ParB overproduction affects growth rate, cell division and motility in a similar way as ParB deficiency. To identify primary ParB targets, here we analysed the impact of a slight increase in ParB level on P. aeruginosa transcriptome. ParB excess, which does not cause changes in growth rate and chromosome segregation, significantly alters the expression of 176 loci. Most notably, the mRNA level of genes adjacent to high affinity ParB binding sites parS1-4 close to oriC is reduced. Conversely, in cells lacking either parB or functional parS sequences the orfs adjacent to parS3 and parS4 are upregulated, indicating that direct ParB- parS3/parS4 interactions repress the transcription in this region. In addition, increased ParB level brings about repression or activation of numerous genes including several transcriptional regulators involved in SOS response, virulence and adaptation. Overall, our data support the role of partitioning protein ParB as a transcriptional regulator in Pseudomonas aeruginosa.


Subject(s)
Bacterial Proteins/genetics , Binding Sites/genetics , Operon/genetics , Promoter Regions, Genetic/genetics , Pseudomonas aeruginosa/genetics , Virulence/genetics , Adaptation, Physiological , Cell Division/genetics , Chromosome Segregation/genetics , Chromosomes, Bacterial/metabolism , Gene Expression Regulation, Bacterial/genetics , Protein Binding/genetics , Transcription, Genetic/genetics
13.
BMC Microbiol ; 16: 59, 2016 Apr 05.
Article in English | MEDLINE | ID: mdl-27044351

ABSTRACT

BACKGROUND: Low-copy-number vectors of potential wide application in biotechnology need to encode stabilization modules ensuring their stable inheritance. The efficiency of stabilization may vary depending on the plasmid host so a thorough analysis of stabilization functions is required before use. RESULTS: To facilitate such analysis highly unstable, mobilizable, broad-host-range (BHR) vectors based on RK2 replicon were constructed. The vectors are suitable for testing of various stabilization functions, including plasmid and chromosomal partitioning cassettes encoding ParB homologues capable of spreading on DNA. The xylE or lacZ reporter systems facilitate easy monitoring of plasmid segregation. CONCLUSION: The range of BHR vectors with different reporter cassettes and alternative mobilization systems expands their application in diverse bacterial species.


Subject(s)
Bacteria/genetics , Genetic Vectors , Plasmids/genetics , Bacterial Proteins/genetics , R Factors , Replicon
14.
Mol Microbiol ; 101(3): 439-56, 2016 08.
Article in English | MEDLINE | ID: mdl-27101775

ABSTRACT

Conjugative transfer of the broad-host-range RA3 plasmid, the archetype of the IncU group, relies on the relaxase NIC that belongs to the as yet uncharacterized MOBP4 subfamily. NIC contains the signature motifs of HUH relaxases involved in Tyr nucleophilic attack. However, it differs in the residue involved in His activation for cation coordination and was shown here to have altered divalent cation requirements. NIC is encoded in the mobC-nic operon preceded directly by oriT, where mobC encodes an auxiliary transfer protein with a dual function: autorepressor and stimulator of conjugative transfer. Here an interplay between MobC and NIC was demonstrated. MobC is required for efficient NIC cleavage of oriT in supercoiled DNA whereas NIC assists MobC in repression of the mobC-nic operon. A 7-bp arm of IR3 (IR3a) was identified as the binding site for NIC and the crucial nucleotides in IR3a for NIC recognition were defined. Fully active oriTRA3 was delineated to a 47-bp DNA segment encompassing a conserved cleavage site sequence, the NIC binding site IR3a and the MobC binding site OM . This highly efficient RA3 conjugative system with defined requirements for minimal oriT could find ample applications in biotechnology and computational biology where simple conjugative systems are needed.


Subject(s)
Endodeoxyribonucleases/genetics , Plasmids/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Conjugation, Genetic , DNA , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DNA, Superhelical/genetics , DNA, Superhelical/metabolism , Endodeoxyribonucleases/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Transfer Techniques , Gene Transfer, Horizontal , Operon , Protein Domains , Structure-Activity Relationship
16.
Appl Environ Microbiol ; 82(8): 2320-2335, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26850301

ABSTRACT

The KorB protein of the broad-host-range conjugative plasmid RA3 from the IncU group belongs to the ParB family of plasmid and chromosomal segregation proteins. As a partitioning DNA-binding factor, KorB specifically recognizes a 16-bp palindrome which is an essential motif in the centromere-like sequence parSRA3, forms a segrosome, and together with its partner IncC (ParA family) participates in active DNA segregation ensuring stable plasmid maintenance. Here we show that by binding to this palindromic sequence, KorB also acts as a repressor for the adjacent mobC promoter driving expression of the mobC-nicoperon, which is involved in DNA processing during conjugation. Three other promoters, one buried in the conjugative transfer module and two divergent promoters located at the border between the replication and stability regions, are regulated by KorB binding to additional KorB operators (OBs). KorB acts as a repressor at a distance, binding to OBs separated from their cognate promoters by between 46 and 1,317 nucleotides. This repressor activity is facilitated by KorB spreading along DNA, since a polymerization-deficient KorB variant with its dimerization and DNA-binding abilities intact is inactive in transcriptional repression. KorB may act as a global regulator of RA3 plasmid functions in Escherichia coli, since its overexpression in transnegatively interferes with mini-RA3 replication and stable maintenance of RA3.


Subject(s)
Bacterial Proteins/metabolism , Escherichia coli/genetics , Gene Expression Regulation, Bacterial , Plasmids , Repressor Proteins/metabolism , Transcription, Genetic , Bacterial Proteins/genetics , Promoter Regions, Genetic , Protein Binding , Repressor Proteins/genetics
17.
PLoS One ; 10(3): e0120867, 2015.
Article in English | MEDLINE | ID: mdl-25794281

ABSTRACT

Among the mechanisms that control chromosome segregation in bacteria are highly-conserved partitioning systems comprising three components: ParA protein (a deviant Walker-type ATPase), ParB protein (a DNA-binding element) and multiple cis-acting palindromic centromere-like sequences, designated parS. Ten putative parS sites have been identified in the P. aeruginosa PAO1 genome, four localized in close proximity of oriC and six, diverged by more than one nucleotide from a perfect palindromic sequence, dispersed along the chromosome. Here, we constructed and analyzed P. aeruginosa mutants deprived of each single parS sequence and their different combinations. The analysis included evaluation of a set of phenotypic features, chromosome segregation, and ParB localization in the cells. It was found that ParB binds specifically to all ten parS sites, although with different affinities. The P. aeruginosa parS mutant with all ten parS sites modified (parSnull) is viable however it demonstrates the phenotype characteristic for parAnull or parBnull mutants: slightly slower growth rate, high frequency of anucleate cells, and defects in motility. The genomic position and sequence of parS determine its role in P. aeruginosa biology. It transpired that any one of the four parS sites proximal to oriC (parS1 to parS4), which are bound by ParB with the highest affinity, is necessary and sufficient for the parABS role in chromosome partitioning. When all these four sites are mutated simultaneously, the strain shows the parSnull phenotype, which indicates that none of the remaining six parS sites can substitute for these four oriC-proximal sites in this function. A single ectopic parS2 (inserted opposite oriC in the parSnull mutant) facilitates ParB organization into regularly spaced condensed foci and reverses some of the mutant phenotypes but is not sufficient for accurate chromosome segregation.


Subject(s)
Chromosome Segregation , Chromosomes, Bacterial , DNA, Bacterial , Pseudomonas aeruginosa/genetics , Replication Origin , Alleles , Bacterial Proteins/metabolism , Base Sequence , Binding Sites , Cloning, Molecular , Gene Silencing , Mutation , Nucleotide Motifs , Phenotype , Position-Specific Scoring Matrices , Protein Binding
18.
BMC Microbiol ; 14: 235, 2014 Sep 04.
Article in English | MEDLINE | ID: mdl-25187417

ABSTRACT

BACKGROUND: The IncU conjugative transfer module represents highly efficient promiscuous system widespread among conjugative plasmids of different incompatibility groups. Despite its frequent occurrence the mechanisms of relaxosome formation/action are far from understood. Here we analyzed the putative transfer auxiliary protein MobC of the conjugative plasmid RA3 from the IncU incompatibility group. RESULTS: MobC is a protein of 176 amino acids encoded in the bicistronic operon mobC-nic adjacent to oriT. MobC is homologous to prokaryotic transcription factors of the ribbon-helix-helix (RHH) superfamily. Conserved LxxugxNlNQiaxxLn motif clusters MobC with the clade of conjugative transfer auxilliary proteins of MobP relaxases. MobC forms dimers in solution and autoregulates the expression of mobCp by binding to an imperfect palindromic sequence (OM) located between putative -35 and -10 motifs of the promoter. Medium-copy number test plasmid containing the oriT-mobCp region is mobilized with a high frequency by the RA3 conjugative system. The mutations introduced into OM that abolished MobC binding in vitro decreased 2-3 fold the frequency of mobilization of the test plasmids. The deletion of OM within the RA3 conjugative module had no effect on transfer if the mobC-nic operon was expressed from the heterologous promoter. If only nic was expressed from the heterologous promoter (no mobC) the conjugative transfer frequency of such plasmid was 1000-fold lower. CONCLUSION: The MobC is an auxiliary transfer protein of dual function. It autoregulates the expression of mobC-nic operon while its presence significantly stimulates transfer efficiency.


Subject(s)
Bacteria/genetics , Conjugation, Genetic , Gene Expression Regulation, Bacterial , Gene Transfer, Horizontal , Operon , Plasmids , Transcription Factors/genetics , Amino Acid Motifs , Cluster Analysis , Phylogeny , Protein Multimerization , Sequence Homology, Amino Acid , Transcription Factors/metabolism
19.
Microbiology (Reading) ; 160(Pt 11): 2406-2420, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25139949

ABSTRACT

Pseudomonas aeruginosa ParA belongs to a large subfamily of Walker-type ATPases acting as partitioning proteins in bacteria. ParA has the ability to both self-associate and interact with its partner ParB. Analysis of the deletion mutants defined the part of the protein involved in dimerization and interactions with ParB. Here, a set of ParA alanine substitution mutants in the region between E67 and L85 was created and analysed in vivo and in vitro. All mutants impaired in dimerization (substitutions at positions M74, H79, Y82 and L84) were also defective in interactions with ParB, suggesting that ParA-ParB interactions depend on the ability of ParA to dimerize. Mutants with alanine substitutions at positions E67, C68, L70, E72, F76, Q83 and L85 were not impaired in dimerization, but were defective in interactions with ParB. The dimerization interface partly overlapped the pseudo-hairpin, involved in interactions with ParB. ParA mutant derivatives tested in vitro showed no defects in ATPase activity. Two parA alleles (parA84, whose product can neither self-interact nor interact with ParB, and parA67, whose product is impaired in interactions with ParB, but not in dimerization) were introduced into the P. aeruginosa chromosome by homologous gene exchange. Both mutants showed defective separation of ParB foci, but to different extents. Only PAO1161 parA84 was visibly impaired in terms of chromosome segregation, growth rate and motility, similar to a parA-null mutant.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/enzymology , Amino Acid Motifs , Amino Acid Sequence , Amino Acid Substitution , Bacterial Proteins/genetics , Dimerization , Molecular Sequence Data , Protein Binding , Pseudomonas aeruginosa/chemistry , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/metabolism , Sequence Alignment
20.
Mol Microbiol ; 93(5): 867-82, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24989777

ABSTRACT

Nudix pyrophosphatases, ubiquitous in all organisms, have not been well studied. Recent implications that some of them may be involved in response to stress and in pathogenesis indicate that they play important biological functions. We have investigated NudC Nudix proteins from the plant pathogen Pseudomonas syringae pv. tomato str. DC3000 and from the human pathogen Pseudomonas aeruginosa PAO1161. We found that these homologous enzymes are homodimeric and in vitro preferentially hydrolyse NADH. The P. syringae mutant strain deficient in NudC accumulated NADH and displayed significant defects in growth, motility and biofilm formation. The wild type copy of the nudC gene with its cognate promoter delivered in trans into the nudC mutant restored its fitness. However, introduction of the P. syringae nudC gene under the control of the strong tacp promoter into either P. syringae or P. aeruginosa cells had a toxic effect on both strains. Opposite to P. syringae NudC, the P. aeruginosa NudC deficiency as well as its overproduction had no visible impact on cells. Moreover, P. aeruginosa NudC does not compensate the lack of its counterpart in the P. syringae mutant. These results indicate that NudC from P. syringae, but not from P. aeruginosa is vital for bacteria.


Subject(s)
Bacterial Proteins/metabolism , Biofilms , Gene Expression Regulation, Bacterial , Pseudomonas aeruginosa/enzymology , Pseudomonas syringae/enzymology , Pyrophosphatases/metabolism , Amino Acid Sequence , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Kinetics , Molecular Sequence Data , Oxidation-Reduction , Promoter Regions, Genetic , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/growth & development , Pseudomonas aeruginosa/physiology , Pseudomonas syringae/genetics , Pseudomonas syringae/growth & development , Pseudomonas syringae/physiology , Pyrophosphatases/chemistry , Pyrophosphatases/genetics , Sequence Alignment , Nudix Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL
...